Measuring oxidative DNA damage and DNA repair using the yeast comet assay.

نویسندگان

  • Flávio Azevedo
  • Filipe Marques
  • Hanna Fokt
  • Rui Oliveira
  • Björn Johansson
چکیده

Chromosomal DNA damage can be a result of several processes and agents of endogenous or exogenous origin. These cause strand breaks or oxidized bases that lead to strand breaks, which relax the normally supercoiled genomic DNA and increase its electrophoretic mobility. The extent of DNA damage can be assessed by single cell gel electrophoresis, where the chromosomal DNA migration distance correlates with the extent of DNA damage. This technique has been used for a variety of applications with several organisms, but only a few studies have been reported for Saccharomyces cerevisiae. A possible reason for this absence is that low cellular DNA content could hamper visualization. Here we report an optimization of the comet assay protocol for yeast cells that is robust and sensitive enough to reproducibly detect background DNA damage and oxidative damage caused by hydrogen peroxide. DNA repair was observed and quantified as diminishing comet tail length with time after oxidative stress removal in a process well described by first-order kinetics with a tail length half-life of 11 min at 37 °C. This is, to our knowledge, the first quantitative measurement of DNA repair kinetics in S. cerevisiae by this method. We also show that diet antioxidants protect from DNA damage, as shown by a three-fold decrease in comet tail length. The possibility of assessment of DNA damage and repair in individual cells applied to the model organism S. cerevisiae creates new perspectives for studying genotoxicity and DNA repair.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies on electron beam induced DNA damage and repair kinetics in lymphocytes by alkaline comet assay

Background: Exposure to ionizing radiation is known to induce oxidative stress followed by damage to critical biomolecules like lipids, proteins and DNA through radiolysis of cellular water. Since radiation has been widely used as an important tool in therapy of cancer, the detailed investigation regarding the DNA damage and repair kinetics would help to predict the radiation sensitivity of cel...

متن کامل

Radiosensitivity and Repair Kinetics of Gamma-Irradiated Leukocytes from Sporadic Prostate Cancer Patients and Healthy Individuals Assessed by Alkaline Comet Assay

Background: Impaired DNA repair mechanism is one of the main causes of tumor genesis. Study of intrinsic radiosensitivity of cancer patients in a non-target tissue (e.g. peripheral blood) might show the extent of DNA repair deficiency of cells in affected individuals and might be used a predictor of cancer predisposition. Methods: Initial radiation-induced DNA damage (ratio of Tail DNA/Head DN...

متن کامل

Stimulation of DNA repair in Saccharomyces cerevisiae by Ginkgo biloba leaf extract.

Many extracts prepared from plants traditionally used for medicinal applications contain a variety of phytochemicals with antioxidant and antigenotoxic activity. In this work we measured the DNA protective effect of extracts of Ginkgo biloba leaves from oxidative stress using Saccharomyces cerevisiae as experimental model. The extract improved viability of yeast cells under oxidative stress imp...

متن کامل

DNA Damage and Oxidative Stress in Patients with Chronic Obstructive Pulmonary Disease

Background: We aimed to assess the level of DNA damage and susceptibility to exogenous mutagens in peripheral blood cells of Chronic Obstructive Pulmonary Disease (COPD) patients and healthy individuals by comet assay. Oxidative stress was also evaluated by means of thiobarbituric acid reactive species (TBARS) in blood plasma. Methods: Case-control study enrolling 51 COPD patients and 51 contro...

متن کامل

DNA Damage in Leukocytes from Fanconi Anemia (FA) Patients and Heterozygotes Induced by Mitomycin C and Ionizing Radiation as Assessed by the Comet and Comet-FISH Assay

Background: Lymphocytes of Fanconi anemia (FA) show an increased sensitivity to the alkylating agents such as mitomycin C (MMC), but their responses to gamma-irradiation is controversial. The extent of DNA damage in leukocytes of FA patients following irradiation and MMC treatment was studied at cellular and single chromosome level. Methods: DNA damage induced by gamma-rays and MMC was measure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Yeast

دوره 28 1  شماره 

صفحات  -

تاریخ انتشار 2011